Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials.

Arkady M. Alt

Definition 1 (*Power Sum Problem*) Find the sum $S_p(n) := 1^p + 2^p + ... + n^p$ where $p, n \in \mathbb{N}$ (or, using sum notation, $S_p(n) = \sum_{k=1}^n k^p$) in closed form.

Recurrence for $S_p(n)$

Exercise 2 Using representations 1 = (k + 1) - k, 2k = k(k + 1) - (k - 1)k, 3k = k(k + 1)(k + 2) - (k - 1)k(k + 1)

find $S_p(n)$ for p = 1, 2, 3 and $n \in \mathbb{N}$.

Exercise 3 By summing differences $k^2 - (k-1)^2 = 2k - 1$, $k^3 - (k-1)^3 = 3k^2 - 3k + 1$,

 $k^{4} - (k-1)^{4} = 4k^{3} - 6k^{2} + 4k - 1$ for k running from 1 to n find S_p(n) for p = 2, 3, 4. General case

Exercise 4 For any $p \in \mathbb{N}$ by summing differences $(k+1)^{p+1} - k^{p+1} = \sum_{i=1}^{p+1} {p+1 \choose i} k^{p+1-i}$ for k running from 1 to *n* prove that

$$S_{p}(n) = \frac{(n+1)^{p+1} - n - 1 - \sum_{i=1}^{p-1} {p+1 \choose i} S_{i}(n)}{p+1}$$
(1)

Exercise 5 For any $p \in \mathbb{N}$ by summing differences $k^{p+1} - k - 1^{p+1} = \sum_{i=1}^{p+1} {p+1 \choose i} k^{p+1-i}$ for k running from 1 to n prove that

$$S_{p}(n) = \frac{1}{p+1} \left(n^{p+1} + \sum_{i=1}^{p} (-1)^{i+1} \binom{p+1}{i+1} S_{p-i}(n) \right)$$
(2)

Recurrences (1) and (2) give opportunity, starting from $S_0(n) = \sum_{k=1}^n k^0 = n$, constructively find representation of $S_p(n)$ as polynomial of n.

Since any polynomial degree of m uniquely defined by their values in m + 1 distinct points ((1) or (2) holds for any natural n) then, by such,

polynomials $S_p(x)$ are defined for any $x \in \mathbb{R}$ and $p \in \mathbb{N}$, more precisely, defined sequence of polynomials $(S_p(x))_{n \in \mathbb{N}}$ by recurrence

$$S_{p}(x) = \frac{(x+1)^{p+1} - 1 - \sum_{i=0}^{p-1} {p+1 \choose i} S_{i}(x)}{p+1}$$
(1')

(or by recurrence

$$S_{p}(x) = \frac{1}{p+1} \left(x^{p+1} + \sum_{i=1}^{p} (-1)^{i+1} {p+1 \choose i+1} S_{p-i}(x) \right)$$
with initial condition $S_{0}(x) = x$.
(2')

1 Bernoulli Numbers and Bernoulli Polynomials

Our goal is to solve this recurrence in closed form, that is to find a regular polynomial representation of $S_p(x)$.

Since $S_p(0) = 0$ for any p = 0, 1, 2, ... then we should find real numbers $s_1, ..., s_{p+1}$ such that $S_p(x) = s_1 x + ... s_{p+1} x^{p+1}$.

Note that the problem would simply be solved if we had known for some polynomial H(x) of degree p + 1 such that $H(x + 1) - H(x) = cx^p$ where *c* is some constant.

Then
$$S_p(n) = \sum_{k=1}^n k^n = \frac{1}{c} \sum_{k=1}^n (H(k+1) - H(k)) = \frac{H(n+1) - H(1)}{c}$$

In a sense, we already have one such polynomial (up to an arbitrary constant c), $H(x) = S_p(x-1) + c$ since $H(x+1) - H(x) = S_p(x) - S_p(x-1) = x^p$

But our problem is that $S_p(x)$ is not yet represented in terms of powers of x.

By differentiation of $S_{p+1}(x) - S_{p+1}(x-1) = x^{p+1}$ we obtain $S'_{p+1}(x) - S'_{p+1}(x-1) = (p+1)x^p$; then $S'_{p+1}(x-1)$ can be considered as another candidate for the role of H(x), which does not look better than $S_p(x-1)$ for the same reason.

We know that
$$S_0(x) = x$$
, $S_1(x) = \frac{x(x+1)}{2}$, $S_2(x) = \frac{x(x+1)(2x+1)}{6}$, $S_3(x) = \frac{x^2(x+1)^2}{4}$
Applying the recurrences (1) or (2) we obtain
 $S_4(x) = \frac{x(x+1)(2x+1)(3x^2+3x-1)}{30}$ and $S_5(x) = \frac{x^2(x+1)^2(2x^2+2x-1)}{12}$.
Accordingly, we also have $S'_0(x) = 1$, $S'_1(x) = x + \frac{1}{2}$, $S'_2(x) = x^2 + x + \frac{1}{6}$, $S'_3(x) = x^3 + \frac{3x^2}{2} + \frac{x}{2}$,
 $S'_4(x) = x^4 + 2x^3 + x^2 - \frac{1}{30}$, $S'_5(x) = x^5 + \frac{5}{2}x^4 + \frac{5}{3}x^3 - \frac{x}{6}$
 $S''_0(x) = 0$, $S''_1(x) = 1$, $S''_2(x) = 2x + 1 = 2\left(x + \frac{1}{2}\right) = 2S'_1(x)$,
 $S''_3(x) = 3x^2 + 3x + \frac{1}{2} = 3\left(x^2 + x + \frac{1}{6}\right) = 3S'_2(x)$,
 $S''_4(x) = 4x^3 + 6x^2 + 2x = 4\left(x^3 + \frac{3x^2}{2} + \frac{x}{2}\right) = 4S'_3(x)$,
 $S''_5(x) = 5x^4 + 10x^3 + 5x^2 - \frac{1}{6} = 5\left(x^4 + 2x^3 + x^2 - \frac{1}{30}\right) = 5S'_4(x)$.

The above equations lead to the conclusion that the correlation $S''_p(x) = pS'_{p-1}(x)$ holds for any $p \in \mathbb{N}$. In fact, assuming $S''_i(x) = pS'_{i-1}(x)$, i = 1, 2, ..., p - 1, and by differentiating (1') twice, we obtain

$$S'_{p}(x) = \frac{(p+1)(x+1)^{p} - \sum_{i=0}^{p-1} {p+1 \choose i} S'_{i}(x)}{p+1} = \frac{(p+1)(x+1)^{p} - 1 - \sum_{i=1}^{p-1} {p+1 \choose i} S'_{i}(x)}{p+1} \text{ and }$$

$$S''_{p}(x) = \frac{(p+1)p(x+1)^{p-1} - \sum_{i=1}^{p-1} {p+1 \choose i} S''_{i}(x)}{p+1} = \frac{(p+1)p(x+1)^{p-1} - \sum_{i=1}^{p-1} {p+1 \choose i} i S'_{i-1}(x)}{p+1} = \frac{(p+1)p(x+1)^{p-1} - (p+1)\sum_{i=1}^{p-1} {p+1 \choose i} i S'_{i-1}(x)}{p+1} = \frac{(p+1)p(x+1)^{p-1} - (p+1)\sum_{i=1}^{p-1} {p} - \sum_{i=1}^{p-1} {p} - \sum_{i=1}^{p-$$

Exercise 6 Prove that $S''_p(x) = pS'_{p-1}(x)$, for any $p \in \mathbb{N}$ using (2').

Thus, by induction, $S''_{p}(x) = pS'_{p-1}(x)$ for any $p \in \mathbb{N}$.

Coming back to the polynomial $S'_p(x-1)$, we denote it by $B_p(x)$, and then by replacing x with x - 1 in the recurrence

$$S'_{p}(x) = \frac{(p+1)(x+1)^{p} - \sum_{i=0}^{p-1} {p+1 \choose i} S'_{i}(x)}{p+1}$$

we obtain the following recurrence for polynomials $B_p(x), p \in \mathbb{N}$:

$$B_p(x) = (x-1)^p + \frac{\sum_{i=1}^p (-1)^{i+1} {p+1 \choose i+1} B_{p-i}(x)}{p+1} .$$
(B2)

Properties. 2

P0. deg $B_p(x) = \deg S'_p(x-1) = p;$ **P1**. $B_0(x) = S'_1(x-1) = 1;$ **P2.** $B'_p(x) = (S'_p(x-1))' = S''_p(x-1) = pS'_{p-1}(x) = pB_{p-1}(x);$ **P3.** $B_p(x+1) - B_p(x) = S'_p(x) - S'_p(x-1) = px^{p-1}, p \in \mathbb{N}.$ We call such polynomials Bernoulli Polynomials. We already have the first few polynomials $B_p(x)$, namely, $B_1(x) = S'_1(x-1) = x - 1 + \frac{1}{2} = x - \frac{1}{2}, B_2(x) = S'_2(x-1) = (x-1)^2 + (x-1) + \frac{1}{6} = x^2 - x + \frac{1}{6}, B_2(x) = \frac{1}{2} + \frac{1}{6} + \frac{1}{$ $B_3(x) = S'_3(x-1) = (x-1)^3 + \frac{3(x-1)^2}{2} + \frac{(x-1)}{2} = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x;$ $B_4(x) = S'_4(x-1) = x^4 - 2x^3 + x^2 - \frac{1}{30}, B_5(x) = S'_5(x-1) = x^5 - \frac{5x^4}{2} + \frac{5x^3}{3} - \frac{x}{6}.$ We can see that $B_1(0) = -\frac{1}{2}$, $B_1(1) = \frac{1}{2}$, but $B_2(0) = B_2(1) = \frac{1}{6}$, $B_3(0) = B_3(1) = 0$, $B_4(0) = B_4(1) = 0$. $-\frac{1}{30}, B_5(0) = B_5(1) = 0$

and in general $B_p(0) = B_p(1)$ for any $p \ge 2$. Furthermore, $B_{2p+1}(0) = B_{2p+1}(1) = 0$.

Since $B_p(x+1) - B_p(x) = px^{p-1}$, then for x = 0 we obtain $B_p(1) - B_p(0) = p \cdot 0^{p-1} \iff B_p(1) = B_p(0)$, for all $p \ge 2$.

(Hypothesis $B_{2p+1}(0) = B_{2p+1}(1) = 0, p \in \mathbb{N}$ is equivalent to dividing $B_{2p+1}(x)$ by x which we will prove later). Note that the recursion $B'_p(x) = pB_{p-1}(x)$, $p \in \mathbb{N}$ with initial condition $B_0(x) = 1$ allows us to obtain polynomials $B_1(x)$, $B_2(x)$, $B_3(x)$, and thus easier than by recurrence (**B1**) or (**B2**).

Indeed, assume that we already know polynomial $B_{p-1}(x)$, then $B_p(x) - B_p(1) = \int_1^x B'_p(t) dt = \int_1^x pB_{p-1}(t) dt \iff$ $B_p(x) = B_p(0) + p \int_1^x B_{p-1}(t) dt.$

Let $B_p := B_p(0), p \in \mathbb{N} \cup \{0\}$. We call such numbers *Bernoulli Numbers*.

By replacing x in (**B1**) or in (**B2**) with 0 we obtain

 $B_{p} = \frac{-\sum_{i=0}^{p-1} {p+1 \choose i} B_{i}}{p+1}$ **(B3)**

or

$$B_p = (-1)^p + \frac{\sum_{i=1}^p (-1)^{i+1} {p+1 \choose i+1} B_{p-i}}{p+1}.$$
 (B4)

Any of these recurrences allows to get consistently numbers $B_1, B_2, B_3, ...$

Exercise 7 Find the first 5 terms of sequence $(B_p)_{p\geq 0}$.

We show that by B_k , k = 1, 2, ..., we can obtain polynomial $B_p(x)$. Let $B_p(x) = b_p x^p + b_{p-1} x^{p-1} + \dots + b_1 x + b_0$, where b_k should be determined. Since $B_p(0) = B_p$ then $b_0 = B_p$. Also since $B'_p(x) = pB_{p-1}(x)$ then $B_p^{(k)}(x) = p(p-1)...(p-k+1)B_{p-k}(x)$ and $B_{p}^{(k)}(x) = (b_{p}x^{p} + b_{p-1}x^{p-1} + \dots + b_{1}x + b_{0})^{(k)} = (b_{p}x^{p} + b_{p-1}x^{p-1} + \dots + b_{k+1}x^{k})^{(k)} + b_{k}k! \text{ yields}$ $B_p^{(k)}(0) = b_k k! \iff p(p-1)\dots(p-k+1)B_{p-k}(0) = b_k k! \iff b_k = \frac{p(p-1)\dots(p-k+1)}{k!}B_{p-k} \iff b_k = \frac{p(p-1)\dots(p-k+1)}{k!}B_{p-k} \iff b_k = \frac{p(p-1)\dots(p-k+1)}{k!}B_{p-k}$

 $b_k = {p \choose k} B_{p-k}, k = 1, 2, ..., p.$ Hence, $B_p(x) = B_p + {p \choose 1} B_{p-1} x^1 + \dots + {p \choose p-1} B_1 x^{p-1} + B_0 x^p = \sum_{k=0}^p {p \choose k} B_{p-k} x^k$. In particular $B_0(x) = x$, $B_1(x) = x - \frac{1}{2}$, $B_2(x) = x^2 - x + \frac{1}{6}$, $B_3(x) = B_0 x^3 + 3B_1 x^2 + 3B_2 x + B_3 = x^3 + 3\left(-\frac{1}{2}\right)x^2 + 3 \cdot \frac{1}{6}x = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x.$ More properties of Bernoulli polynomials and numbers. **P4.** $\int_0^1 B_p(x) dx = 0$ for any $p \in \mathbb{N}$. **Proof.** Because of **P2**. we have $B'_{p+1}(x) = (p+1)B_p(x)$ then $(p+1)\int_{0}^{1}B_{p}(x)\,dx = (p+1)\int_{0}^{1}B_{p+1}'(x)\,dx = (p+1)\left(B_{p+1}(x)\right)_{0}^{1} = (p+1)\left(B_{p+1}(1) - B_{p+1}(0)\right) = (p+1)\cdot 0 = (p+1)\cdot 0$ $0 \implies \int_0^1 B_p(x) \, dx = 0.$ We will prove that properties **P1.,P2.,P3.** determine polynomials $B_p(x)$ uniquely. Let $(Q_p(x))_{p>0}$ be a sequence of polynomials such that $Q_0(x) = 1$, $Q'_n(x) = nQ_{n-1}(x)$, $n \in \mathbb{N}$ and $Q_p(x+1) - Q_n(x)$ $Q_p(x+1) = px^{p-1}, p \in \mathbb{N}.$ First note that $Q_0(x) = 1 = B_0(x)$. Also, $Q_n(1) = Q_n(0)$ for $n \ge 2$ since $Q_p(1) - Q_p(0) = p \cdot 0^{p-1} = 0, p \ge 2$. This yields $\int_0^1 Q_p(x) dx = 0, p \in \mathbb{N}.$ Indeed, $p \int_0^1 Q_p(x) dx = \int_0^1 Q'_{p+1}(x) dx = Q_{n+1}(1) - Q_{n+1}(0) = 0$. Since $Q'_1(x) = 1 \cdot Q_0(x) = 1$ then $Q_1(x) = 1$ x + c and, therefore, $Q'_2(x) = 2Q_1(x)$ yields $Q_2(x) = x^2 + 2cx + d$. Then $Q_2(x+1) - Q_2(x) = 2x \iff (x+1)^2 + 2c(x+1) - x^2 - 2cx = 2x \iff$ $2c + 1 = 0 \iff c = -\frac{1}{2}.\text{Hence, } Q_1(x) = x - \frac{1}{2} = B_1(x)$ Assume that $Q_p(x) = B_p(x)$ then $Q'_{p+1}(x) = (p+1)Q_p(x) = (p+1)B_p(x) = B'_{p+1}(x) \iff$ $Q_{p+1}(x) = B_{p+1}(x) + c.$ Therefore $0 = \int_0^1 Q_{p+1}(x) dx = \int_0^1 \left(B_{p+1}(x) + c \right) dx = \int_0^1 B_{p+1}(x) dx + c = c.$ So, by induction $Q_p(x) = B_p(x)$ for any $p \in \mathbb{N}$. **P5.** $B_p(x) = (-1)^p B_p(1-x), p \ge 0.$ (Complement property) **Proof.** Let $Q_p(x) := (-1)^p B_p(1-x), p \in \mathbb{N} \cup \{0\}$ then: **1.** By **P1** $Q_0(x) = B_0(1-x) = 1$; **2.** By **P2**. $Q'_p(x) = (-1)^p (B_p(1-x))' = (-1)^p (B_p(1-x))' = -(-1)^p B'_p(1-x) = p(-1)^{p-1} B_{p-1}(1-x) =$ $pQ_{p-1}(x);$ **3.** By **P3**. $Q_p(x+1) - Q_p(x) = (-1)^p B_p(1-(x+1)) - (-1)^p B_p(1-x) =$ $(-1)^{p} \left(B_{p} \left(-x \right) - B_{p} \left(1 + \left(-x \right) \right) \right) = (-1)^{p+1} \left(B_{p} \left(\left(-x \right) + 1 \right) - B_{p} \left(-x \right) \right) = p \left(-1 \right)^{p+1} \left(-x \right)^{p-1} = p x^{p-1}.$ Therefore, by property of uniqueness we get $(-1)^p B_p (1-x) = B_p (x)$.

Corollary 8 For $p = 2m + 1, m \in \mathbb{N}$ holds $B_p(0) = 0$.

Indeed, if p = 2m + 1 then $B_p(x) = -B_p(1 - x)$ and, therefore, for x = 0 we have $B_p(0) = -B_p(1) = -B_p(0) \implies 2B_p(0) = 0 \iff B_p(0) = 0$.

Corollary 9 By replacing x in $B_p(x) = (-1)^p B_p(1-x)$ with x + 1 we obtain

$$B_{p}(x+1) = (-1)^{p} B_{p}(1-(x+1)) = (-1)^{p} B_{p}(-x) = (-1)^{p} \sum_{k=0}^{p} {p \choose k} B_{p-k}(-x)^{k} = \sum_{k=0}^{p} (-1)^{n-k} {p \choose k} B_{p-k} x^{k} = \sum_{k=0}^{p} (-1)^{k} {p \choose k} B_{p-k} x^{k}.$$

Now, we write $S_{p}(n)$ in polynomial form by powers of n .
Since $B_{p+1}(x+1) - B_{p+1}(x) = (p+1) x^{p}$ then $(p+1) S_{p}(n) = (p+1) \sum_{k=1}^{n} k^{p} = \sum_{k=1}^{n} \left(B_{p+1}(k+1) - B_{p+1}(k) \right) = B_{p+1}(n+1) - B_{p+1}(1) = B_{p+1}(n+1) - B_{p+1}(0)$
and, therefore, $(p+1) S_{p}(n) = B_{p+1}(n+1) - B_{p+1} \iff$

$$S_{p}(n) = \frac{B_{p+1}(n+1) - B_{p+1}}{p+1} = \frac{1}{p+1} \left(\sum_{k=0}^{p+1} (-1)^{k} {p+1 \choose k} B_{p+1-k} n^{k} - B_{p+1}\right) = \frac{1}{p+1} \sum_{k=1}^{p+1} (-1)^{k} {p+1 \choose k} B_{p+1-k} n^{k}.$$

$$(\bigstar) \qquad S_{p}(n) = \frac{1}{p+1} \sum_{k=1}^{p+1} (-1)^{k} {p+1 \choose k} B_{p+1-k} n^{k} \text{ (Faulhaber's Formula).}$$
Problem 1

Problem 1

Prove that $B_{2m+1}(x)$ is divisible by $S_2(x-1)$ for any $m \in \mathbb{N}$.

Problem 2

•

Prove that $Sign(B_{2m}) = (-1)^{m+1}$ and $\max_{[0,1]} B_{4m-2}(x) = B_{4m-2}$, $\min_{[0,1]} B_{4m}(x) = B_{4m}, m \in \mathbb{N}$. Hint (use induction).

- 1. A. M. Alt-Variations on a theme-The sum of equal powers of natural numbers, part 1_Crux vol.40,n.8;
- 2. A. M. Alt-Variations on a theme-The sum of equal powers of natural numbers, part 2_Crux vol.40,n.10.