Power-sum problem, Bernoulli Numbers and Bernoulli Polynomials.

Arkady M. Alt

Definition 1 (Power Sum Problem) Find the sum $S_{p}(n):=1^{p}+2^{p}+\ldots+n^{p}$ where $p, n \in \mathbb{N}$ (or, using sum notation, $\left.S_{p}(n)=\sum_{k=1}^{n} k^{p}\right)$ in closed form.

Recurrence for $S_{p}(n)$

Exercise 2 Using representations $1=(k+1)-k, 2 k=k(k+1)-(k-1) k, 3 k=k(k+1)(k+2)-(k-1) k(k+1)$ find $S_{p}(n)$ for $p=1,2,3$ and $n \in \mathbb{N}$.

Exercise 3 By summing differences $k^{2}-(k-1)^{2}=2 k-1, k^{3}-(k-1)^{3}=3 k^{2}-3 k+1$,
$k^{4}-(k-1)^{4}=4 k^{3}-6 k^{2}+4 k-1$ for k running from 1 to n find $S_{p}(n)$ for $p=2,3,4$.

General case

Exercise 4 For any $p \in \mathbb{N}$ by summing differences $(k+1)^{p+1}-k^{p+1}=\sum_{i=1}^{p+1}\binom{p+1}{i} k^{p+1-i}$ for k running from 1 to n prove that

$$
\begin{equation*}
S_{p}(n)=\frac{(n+1)^{p+1}-n-1-\sum_{i=1}^{p-1}\binom{p+1}{i} S_{i}(n)}{p+1} \tag{1}
\end{equation*}
$$

Exercise 5 For any $p \in \mathbb{N}$ by summing differences $k^{p+1}-k-1^{p+1}=\sum_{i=1}^{p+1}\binom{p+1}{i} k^{p+1-i}$ for k running from 1 to n prove that

$$
\begin{equation*}
S_{p}(n)=\frac{1}{p+1}\left(n^{p+1}+\sum_{i=1}^{p}(-1)^{i+1}\binom{p+1}{i+1} S_{p-i}(n)\right) \tag{2}
\end{equation*}
$$

Recurrences (1) and (2) give opportunity, starting from $S_{0}(n)=\sum_{k=1}^{n} k^{0}=n$, constructively find representation of $S_{p}(n)$ as polynomial of n.

Since any polynomial degree of m uniquely defined by their values in $m+1$ distinct points ((1) or (2) holds for any natural n) then, by such,
polynomials $S_{p}(x)$ are defined for any $x \in \mathbb{R}$ and $p \in \mathbb{N}$, more precisely, defined sequence of polynomials $\left(S_{p}(x)\right)_{p \in \mathbb{N}}$ by recurrence

$$
S_{p}(x)=\frac{(x+1)^{p+1}-1-\sum_{i=0}^{p-1}\binom{p+1}{i} S_{i}(x)}{p+1}
$$

(or by recurrence

$$
\begin{equation*}
\left.S_{p}(x)=\frac{1}{p+1}\left(x^{p+1}+\sum_{i=1}^{p}(-1)^{i+1}\binom{p+1}{i+1} S_{p-i}(x)\right)\right) \tag{2’}
\end{equation*}
$$

with initial condition $S_{0}(x)=x$.

1 Bernoulli Numbers and Bernoulli Polynomials

Our goal is to solve this recurrence in closed form, that is to find a regular polynomial representation of $S_{p}(x)$.
Since $S_{p}(0)=0$ for any $p=0,1,2, \ldots$ then we should find real numbers s_{1}, \ldots, s_{p+1} such that $S_{p}(x)=s_{1} x+$ $\ldots s_{p+1} x^{p+1}$.

Note that the problem would simply be solved if we had known for some polynomial $H(x)$ of degree $p+1$ such that $H(x+1)-H(x)=c x^{p}$ where c is some constant.

Then $S_{p}(n)=\sum_{k=1}^{n} k^{n}=\frac{1}{c} \sum_{k=1}^{n}(H(k+1)-H(k))=\frac{H(n+1)-H(1)}{c}$.
In a sense, we already have one such polynomial (up to an arbitrary constant c), $H(x)=S_{p}(x-1)+c$ since $H(x+1)-H(x)=S_{p}(x)-S_{p}(x-1)=x^{p}$

But our problem is that $S_{p}(x)$ is not yet represented in terms of powers of x.
By differentiation of $S_{p+1}(x)-S_{p+1}(x-1)=x^{p+1}$ we obtain $S_{p+1}^{\prime}(x)-S_{p+1}^{\prime}(x-1)=(p+1) x^{p}$; then $S_{p+1}^{\prime}(x-1)$ can be co sidered as another candidate for the role of $H(x)$, which does not look better than $S_{p}(x-1)$ for the same reason.

We know that $S_{0}(x)=x, S_{1}(x)=\frac{x(x+1)}{2}, S_{2}(x)=\frac{x(x+1)(2 x+1)}{6}, S_{3}(x)=\frac{x^{2}(x+1)^{2}}{4}$
Applying the recurrences (1) or (2) we obtain
$S_{4}(x)=\frac{x(x+1)(2 x+1)\left(3 x^{2}+3 x-1\right)}{30}$ and $S_{5}(x)=\frac{x^{2}(x+1)^{2}\left(2 x^{2}+2 x-1\right)}{12}$.
Accordingly, we also have $S_{0}^{\prime}(x)=1, S_{1}^{\prime}(x)=x+\frac{1}{2}, S_{2}^{\prime}(x)=x^{2}+x+\frac{1}{6}, S_{3}^{\prime}(x)=x^{3}+\frac{3 x^{2}}{2}+\frac{x}{2}$,
$S_{4}^{\prime}(x)=x^{4}+2 x^{3}+x^{2}-\frac{1}{30}, S_{5}^{\prime}(x)=x^{5}+\frac{5}{2} x^{4}+\frac{5}{3} x^{3}-\frac{x}{6}$
$S_{0}^{\prime \prime}(x)=0, S_{1}^{\prime \prime}(x)=1, S_{2}^{\prime \prime}(x)=2 x+1=2\left(x+\frac{1}{2}\right)=2 S_{1}^{\prime}(x)$,
$S_{3}^{\prime \prime}(x)=3 x^{2}+3 x+\frac{1}{2}=3\left(x^{2}+x+\frac{1}{6}\right)=3 S_{2}^{\prime}(x)$,
$S_{4}^{\prime \prime}(x)=4 x^{3}+6 x^{2}+2 x=4\left(x^{3}+\frac{3 x^{2}}{2}+\frac{x}{2}\right)=4 S_{3}^{\prime}(x)$,
$S_{5}^{\prime \prime}(x)=5 x^{4}+10 x^{3}+5 x^{2}-\frac{1}{6}=5\left(x^{4}+2 x^{3}+x^{2}-\frac{1}{30}\right)=5 S_{4}^{\prime}(x)$.
The above equations lead to the conclusion that the correlation $S_{p}^{\prime \prime}(x)=p S_{p-1}^{\prime}(x)$ holds for any $p \in \mathbb{N}$. In fact, assuming $S_{i}^{\prime \prime}(x)=p S_{i-1}^{\prime}(x), i=1,2, \ldots, p-1$, and by differentiating $\left(1^{\prime}\right)$ twice, we obtain

$$
\begin{aligned}
& S_{p}^{\prime}(x)=\frac{(p+1)(x+1)^{p}-\sum_{i=0}^{p-1}\binom{p+1}{i} S_{i}^{\prime}(x)}{p+1}=\frac{(p+1)(x+1)^{p}-1-\sum_{i=1}^{p-1}\binom{p+1}{i} S_{i}^{\prime}(x)}{p+1} \text { and } \\
& S_{p}^{\prime \prime}(x)=\frac{(p+1) p(x+1)^{p-1}-\sum_{i=1}^{p-1}\binom{p+1}{i} S_{i}^{\prime \prime}(x)}{p+1}= \\
& \frac{(p+1) p(x+1)^{p-1}-\sum_{i=1}^{p-1}\binom{p+1}{i} i S_{i-1}^{\prime}(x)}{p+1}= \\
& \frac{(p+1) p(x+1)^{p-1}-(p+1) \sum_{i=1}^{p-1}\binom{p}{i-1} S_{i-1}^{\prime}(x)}{p+1}= \\
& p(x+1)^{p-1}-\sum_{i=0}^{p-2}\binom{p}{i} S_{i-1}^{\prime}(x)=p \cdot \frac{(x+1)^{p-1}-\sum_{i=0}^{p-2}\binom{p}{i} S_{i-1}^{\prime}(x)}{p}=p S_{p-1}^{\prime}(x)
\end{aligned}
$$

Exercise 6 Prove that $S_{p}^{\prime \prime}(x)=p S_{p-1}^{\prime}(x)$, for any $p \in \mathbb{N}$ using (2').
Thus, by induction, $S_{p}^{\prime \prime}(x)=p S_{p-1}^{\prime}(x)$ for any $p \in \mathbb{N}$.
Coming back to the polynomial $S_{p}^{\prime}(x-1)$, we denote it by $B_{p}(x)$, and then by replacing x with $x-1$ in the recurrence

$$
S_{p}^{\prime}(x)=\frac{(p+1)(x+1)^{p}-\sum_{i=0}^{p-1}\binom{p+1}{i} S_{i}^{\prime}(x)}{p+1}
$$

we obtain the following recurrence for polynomials $B_{p}(x), p \in \mathbb{N}$:

$$
\begin{equation*}
B_{p}(x)=(x-1)^{p}+\frac{\sum_{i=1}^{p}(-1)^{i+1}\binom{p+1}{i+1} B_{p-i}(x)}{p+1} . \tag{B2}
\end{equation*}
$$

2 Properties.

P0. $\operatorname{deg} B_{p}(x)=\operatorname{deg} S_{p}^{\prime}(x-1)=p$;
P1. $B_{0}(x)=S_{1}^{\prime}(x-1)=1$;
P2. $B_{p}^{\prime}(x)=\left(S_{p}^{\prime}(x-1)\right)^{\prime}=S_{p}^{\prime \prime}(x-1)=p S_{p-1}^{\prime}(x)=p B_{p-1}(x)$;
P3. $B_{p}(x+1)-B_{p}(x)=S_{p}^{\prime}(x)-S_{p}^{\prime}(x-1)=p x^{p-1}, p \in \mathbb{N}$.
We call such polynomials Bernoulli Polynomials.
We already have the first few polynomials $B_{p}(x)$, namely,
$B_{1}(x)=S_{1}^{\prime}(x-1)=x-1+\frac{1}{2}=x-\frac{1}{2}, B_{2}(x)=S_{2}^{\prime}(x-1)=(x-1)^{2}+(x-1)+\frac{1}{6}=x^{2}-x+\frac{1}{6}$,
$B_{3}(x)=S_{3}^{\prime}(x-1)=(x-1)^{3}+\frac{3(x-1)^{2}}{2}+\frac{(x-1)}{2}=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$;
$B_{4}(x)=S_{4}^{\prime}(x-1)=x^{4}-2 x^{3}+x^{2}-\frac{1}{30}, B_{5}(x)=S_{5}^{\prime}(x-1)=x^{5}-\frac{5 x^{4}}{2}+\frac{5 x^{3}}{3}-\frac{x}{6}$.
We can see that $B_{1}(0)=-\frac{1}{2}, B_{1}(1)=\frac{1}{2}$, but $B_{2}(0)=B_{2}(1)=\frac{1}{6}, B_{3}(0)=B_{3}(1)=0, B_{4}(0)=B_{4}(1)=$ $-\frac{1}{30}, B_{5}(0)=B_{5}(1)=0$
and in general $B_{p}(0)=B_{p}(1)$ for any $p \geq 2$. Furthermore, $B_{2 p+1}(0)=B_{2 p+1}(1)=0$.
Since $B_{p}(x+1)-B_{p}(x)=p x^{p-1}$, then for $x=0$ we obtain $B_{p}(1)-B_{p}(0)=p \cdot 0^{p-1} \Longleftrightarrow B_{p}(1)=B_{p}(0)$, for all $p \geq 2$.
(Hypothesis $B_{2 p+1}(0)=B_{2 p+1}(1)=0, p \in \mathbb{N}$ is equivalent to dividing $B_{2 p+1}(x)$ by x which we will prove later).
Note that the recursion $B_{p}^{\prime}(x)=p B_{p-1}(x), p \in \mathbb{N}$ with initial condition $B_{0}(x)=1$ allows us to obtain polynomials $B_{1}(x), B_{2}(x), B_{3}(x), \ldots$ and thus easier than by recurrence (B1) or (B2).

Indeed, assume that we already know polynomial $B_{p-1}(x)$, then $B_{p}(x)-B_{p}(1)=\int_{1}^{x} B_{p}^{\prime}(t) d t=\int_{1}^{x} p B_{p-1}(t) d t \Longleftrightarrow$ $B_{p}(x)=B_{p}(0)+p \int_{1}^{x} B_{p-1}(t) d t$.

Let $B_{p}:=B_{p}(0), p \in \mathbb{N} \cup\{0\}$. We call such numbers Bernoulli Numbers.
By replacing x in (B1) or in (B2) with 0 we obtain

$$
\begin{equation*}
B_{p}=\frac{-\sum_{i=0}^{p-1}\binom{p+1}{i} B_{i}}{p+1} \tag{B3}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{p}=(-1)^{p}+\frac{\sum_{i=1}^{p}(-1)^{i+1}\binom{p+1}{i+1} B_{p-i}}{p+1} . \tag{B4}
\end{equation*}
$$

Any of these recurrences allows to get consistently numbers $B_{1}, B_{2}, B_{3}, \ldots$
Exercise 7 Find the first 5 terms of sequence $\left(B_{p}\right)_{p \geq 0}$.
We show that by $B_{k}, k=1,2, \ldots$, we can obtain polynomial $B_{p}(x)$.
Let $B_{p}(x)=b_{p} x^{p}+b_{p-1} x^{p-1}+\ldots+b_{1} x+b_{0}$, where b_{k} should be determined.
Since $B_{p}(0)=B_{p}$ then $b_{0}=B_{p}$. Also since $B_{p}^{\prime}(x)=p B_{p-1}(x)$ then $B_{p}^{(k)}(x)=p(p-1) \ldots(p-k+1) B_{p-k}(x)$ and $B_{p}^{(k)}(x)=\left(b_{p} x^{p}+b_{p-1} x^{p-1}+\ldots+b_{1} x+b_{0}\right)^{(k)}=\left(b_{p} x^{p}+b_{p-1} x^{p-1}+\ldots+b_{k+1} x^{k}\right)^{(k)}+b_{k} k$! yields $B_{p}^{(k)}(0)=b_{k} k!\Longleftrightarrow p(p-1) \ldots(p-k+1) B_{p-k}(0)=b_{k} k!\Longleftrightarrow b_{k}=\frac{p(p-1) \ldots(p-k+1)}{k!} B_{p-k} \Longleftrightarrow$

$$
b_{k}=\binom{p}{k} B_{p-k}, k=1,2, \ldots, p
$$

Hence, $B_{p}(x)=B_{p}+\binom{p}{1} B_{p-1} x^{1}+\ldots+\binom{p}{p-1} B_{1} x^{p-1}+B_{0} x^{p}=\sum_{k=0}^{p}\binom{p}{k} B_{p-k} x^{k}$.
In particular $B_{0}(x)=x, B_{1}(x)=x-\frac{1}{2}, B_{2}(x)=x^{2}-x+\frac{1}{6}$,
$B_{3}(x)=B_{0} x^{3}+3 B_{1} x^{2}+3 B_{2} x+B_{3}=x^{3}+3\left(-\frac{1}{2}\right) x^{2}+3 \cdot \frac{1}{6} x=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$.

More properties of Bernoulli polynomials and numbers.

P4. $\int_{0}^{1} B_{p}(x) d x=0$ for any $p \in \mathbb{N}$.
Proof. Because of P2. we have $B_{p+1}^{\prime}(x)=(p+1) B_{p}(x)$ then
$(p+1) \int_{0}^{1} B_{p}(x) d x=(p+1) \int_{0}^{1} B_{p+1}^{\prime}(x) d x=(p+1)\left(B_{p+1}(x)\right)_{0}^{1}=(p+1)\left(B_{p+1}(1)-B_{p+1}(0)\right)=(p+1) \cdot 0=$ $0 \Longrightarrow \int_{0}^{1} B_{p}(x) d x=0$.

We will prove that properties P1,,P2.,P3. determine polynomials $B_{p}(x)$ uniquely.
Let $\left(Q_{p}(x)\right)_{p \geq 0}$ be a sequence of polynomials such that $Q_{0}(x)=1, Q_{n}^{\prime}(x)=n Q_{n-1}(x), n \in \mathbb{N}$ and $Q_{p}(x+1)-$ $Q_{p}(x+1)=p x^{p-1}, p \in \mathbb{N}$.

First note that $Q_{0}(x)=1=B_{0}(x)$.Also, $Q_{n}(1)=Q_{n}(0)$ for $n \geq 2$ since $Q_{p}(1)-Q_{p}(0)=p \cdot 0^{p-1}=0, p \geq 2$.
This yields $\int_{0}^{1} Q_{p}(x) d x=0, p \in \mathbb{N}$.
Indeed, $p \int_{0}^{1} Q_{p}(x) d x=\int_{0}^{1} Q_{p+1}^{\prime}(x) d x=Q_{n+1}(1)-Q_{n+1}(0)=0$. Since $Q_{1}^{\prime}(x)=1 \cdot Q_{0}(x)=1$ then $Q_{1}(x)=$ $x+c$ and, therefore, $Q_{2}^{\prime}(x)=2 Q_{1}(x)$
yields $Q_{2}(x)=x^{2}+2 c x+d$. Then $Q_{2}(x+1)-Q_{2}(x)=2 x \Longleftrightarrow(x+1)^{2}+2 c(x+1)-x^{2}-2 c x=2 x \Longleftrightarrow$
$2 c+1=0 \Longleftrightarrow c=-\frac{1}{2}$. Hence, $Q_{1}(x)=x-\frac{1}{2}=B_{1}(x)$
Assume that $Q_{p}(x)=B_{p}(x)$ then $Q_{p+1}^{\prime}(x)=(p+1) Q_{p}(x)=(p+1) B_{p}(x)=B_{p+1}^{\prime}(x) \Longleftrightarrow$
$Q_{p+1}(x)=B_{p+1}(x)+c$.Therefore $0=\int_{0}^{1} Q_{p+1}(x) d x=\int_{0}^{1}\left(B_{p+1}(x)+c\right) d x=\int_{0}^{1} B_{p+1}(x) d x+c=c$.
So, by induction $Q_{p}(x)=B_{p}(x)$ for any $p \in \mathbb{N}$.
P5. $B_{p}(x)=(-1)^{p} B_{p}(1-x), p \geq 0$.(Complement property)
Proof. Let $Q_{p}(x):=(-1)^{p} B_{p}(1-x), p \in \mathbb{N} \cup\{0\}$ then:

1. By P1 $Q_{0}(x)=B_{0}(1-x)=1$;
2. By P2. $Q_{p}^{\prime}(x)=(-1)^{p}\left(B_{p}(1-x)\right)^{\prime}=(-1)^{p}\left(B_{p}(1-x)\right)^{\prime}=-(-1)^{p} B_{p}^{\prime}(1-x)=p(-1)^{p-1} B_{p-1}(1-x)=$ $p Q_{p-1}(x)$;
3. By P3. $Q_{p}(x+1)-Q_{p}(x)=(-1)^{p} B_{p}(1-(x+1))-(-1)^{p} B_{p}(1-x)=$ $(-1)^{p}\left(B_{p}(-x)-B_{p}(1+(-x))\right)=(-1)^{p+1}\left(B_{p}((-x)+1)-B_{p}(-x)\right)=p(-1)^{p+1}(-x)^{p-1}=p x^{p-1}$.
Therefore, by property of uniqueness we get $(-1)^{p} B_{p}(1-x)=B_{p}(x)$.
Corollary 8 For $p=2 m+1, m \in \mathbb{N}$ holds $B_{p}(0)=0$.
Indeed, if $p=2 m+1$ then $B_{p}(x)=-B_{p}(1-x)$ and, therefore, for $x=0$ we have $B_{p}(0)=-B_{p}(1)=-B_{p}(0) \Longrightarrow$ $2 B_{p}(0)=0 \Longleftrightarrow B_{p}(0)=0$.

Corollary 9 By replacing x in $B_{p}(x)=(-1)^{p} B_{p}(1-x)$ with $x+1$ we obtain

$$
\begin{aligned}
& B_{p}(x+1)=(-1)^{p} B_{p}(1-(x+1))=(-1)^{p} B_{p}(-x)=(-1)^{p} \sum_{k=0}^{p}\binom{p}{k} B_{p-k}(-x)^{k}= \\
& \sum_{k=0}^{p}(-1)^{n-k}\binom{p}{k} B_{p-k} x^{k}=\sum_{k=0}^{p}(-1)^{k}\binom{p}{k} B_{p-k} x^{k} .
\end{aligned}
$$

Now, we write $S_{p}(n)$ in polynomial form by powers of n.
Since $B_{p+1}(x+1)-B_{p+1}(x)=(p+1) x^{p}$ then $(p+1) S_{p}(n)=(p+1) \sum_{k=1}^{n} k^{p}=$
$\sum_{k=1}^{n}\left(B_{p+1}(k+1)-B_{p+1}(k)\right)=B_{p+1}(n+1)-B_{p+1}(1)=B_{p+1}(n+1)-B_{p+1}(0)$
and, therefore, $(p+1) S_{p}(n)=B_{p+1}(n+1)-B_{p+1} \Longleftrightarrow$
$\left.S_{p}(n)=\frac{B_{p+1}(n+1)-B_{p+1}}{p+1}=\frac{1}{p+1}\left(\begin{array}{c}p+1 \\ \sum_{k=0}(-1)^{k}\end{array} \begin{array}{c}p+1 \\ k\end{array}\right) B_{p+1-k} n^{k}-B_{p+1}\right)=$ $\frac{1}{p+1} \sum_{k=1}^{p+1}(-1)^{k}\binom{p+1}{k} B_{p+1-k} n^{k}$.
(\star) $\quad S_{p}(n)=\frac{1}{p+1} \sum_{k=1}^{p+1}(-1)^{k}\binom{p+1}{k} B_{p+1-k} n^{k}$ (Faulhaber's Formula).

Problem 1

Prove that $B_{2 m+1}(x)$ is divisible by $S_{2}(x-1)$ for any $m \in \mathbb{N}$.

Problem 2

Prove that $\operatorname{Sign}\left(B_{2 m}\right)=(-1)^{m+1}$ and $\max _{[0,1]} B_{4 m-2}(x)=B_{4 m-2}, \min _{[0,1]} B_{4 m}(x)=B_{4 m}, m \in \mathbb{N}$.
Hint (use induction).

1. A. M. Alt-Variations on a theme-The sum of equal powers of natural numbers, part 1_Crux vol.40,n.8;
2. A. M. Alt-Variations on a theme-The sum of equal powers of natural numbers, part 2_Crux vol.40,n.10.
